Semi-Analytic Solution and Stability of a Space Truss Using a High-Order Taylor Series Method
نویسندگان
چکیده
This study is to analyse the dynamical instability (or the buckling) of a steel space truss using the accurate solutions obtained by the high-order Taylor series method. One is used to obtain numerical solutions for analysing instability, because it is difficult to find the analytic solution for a geometrical nonlinearity system. However, numerical solutions can yield incorrect analyses in the case of a space truss model with high nonlinearity. So, we use the semi-analytic solutions obtained by the high-order Taylor series to analyse the instability of the nonlinear truss system. Based on the semi-analytic solutions, we investigate the dynamical instability of the truss systems under step, sinusoidal and beating excitations. The analysis results show that the reliable attractors in the phase space can be observed even though various forces are excited. Furthermore, the dynamic buckling levels with periodic sinusoidal and beating excitations are lower, and the responses react sensitively according to the beating and the sinusoidal excitation.
منابع مشابه
Nonlinear Analysis of Truss Structures Using Dynamic Relaxation (RESEARCH NOTE)
This paper presents a new approach for large-deflection analysis of truss structures employing the Dynamic Relaxation method (DR). The typical formulation for DR has been established utilizing the finite difference technique which is categorized as an explicit method. The special characteristic of the explicit method is its simple algebraic relationships in comparison with complicated matrix op...
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملNUMERICAL SOLUTION OF THE MOST GENERAL NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL-DIFFERENCE EQUATIONS BY USING TAYLOR POLYNOMIAL APPROACH
In this study, a Taylor method is developed for numerically solving the high-order most general nonlinear Fredholm integro-differential-difference equations in terms of Taylor expansions. The method is based on transferring the equation and conditions into the matrix equations which leads to solve a system of nonlinear algebraic equations with the unknown Taylor coefficients. Also, we test the ...
متن کاملThe Combined Reproducing Kernel Method and Taylor Series for Handling Fractional Differential Equations
This paper presents the numerical solution for a class of fractional differential equations. The fractional derivatives are described in the Caputo cite{1} sense. We developed a reproducing kernel method (RKM) to solve fractional differential equations in reproducing kernel Hilbert space. This method cannot be used directly to solve these equations, so an equivalent transformation is made by u...
متن کاملشبیهسازی عددی جریان تقارنمحوری مافوقصوت لزج بر روی دماغه سرپخ با استفاده از روش اختلاف محدود مرتبه چهارم قطری شده
Abstract: In this paper, by using diagonal fourth order central difference method and TLNS equations, the numerical solution of the steady viscous supersonic axisymmetric flow is implemented over blunt cone with shock-fitting method. Because of using high order terms of Taylor series in discretization of derivation, this method has high accuracy and low numerical error (dispersion error) with r...
متن کامل